1

You're in the right place.

Read more about Teiko's spectral flow service @ teiko.bio/spectral-flow-cytometry

Spectral vs conventional flow basics series How spectral allows higher-parameter analysis

High-parameter cytometry for clinical trials

Ramji Srinivasan Teiko CEO

Problem

Traditional Flow Cytometry Detection

Adapted from FluoroFinder

So what?

Spectral Flow can distinguish overlapping signals that would stump conventional flow

Teiko.bio

Spectral Flow

Conventional Flow

Adapted from <u>BiteSizeBio</u>

That means more markers, and finer resolution

I	Classical Flow	Spectral
Markers	6-8	25
Possible subtypes	~52	298
% of Cells Recovered	95%+	95%+
Days to run 300 samples at a target of 1M events per sample	~1 day	~1 day
Value	Speed, cost	Tighter variation

Sources: Teiko estimates, research.

In action

11

40 marker panel (<u>OMIP-69</u>)

γδ T cells also associated with "major autoimmune rheumatic diseases"... but take up a lot of channels to resolve

Markers			
Viability	CD2		
CD45	CD56		
CD3	CCR7		
CD4	CD27		
CD8	CD28		
CD25	CD45RA		
ΤϹℝγδ	CD95		
CD14	CD127		
CD16	CD337		
CD11c	CCR6		
CD19	CCR5		
CD20	CXCR5		
CD24	CXCR3		
CD39	HLA-DR		
lgD	CD38		
lgG	CD57		
lgM	PD-1		
CD141	CD159a		
CD1c	CD159c		
CD123	CD314		

Teiko.bio

12

Emission spectrum for 40 marker panel (OMIP-69)

Unmixing preview

APC 100 Af647 80 Relative Emission, % 60 40 20 0 33332232²222222222222222 5355555 2° 5 5 5 5 5 50 50 8 6 8 Ultraviolet Violet Blue Yellow-Green Red 355 nm 405 nm 488 nm 561 nm 640 nm

Spectral Flow

Experiment design before acquisition

^{III} The cell with three fluorochromes: A,B and C

Teiko.bio

Observed Spectra from a cell 3.5 3 2.5 Intensity 2 1.5 1 0.5 0 1 3 5 7 9 11 13 15 17 19 21 Detector

Adapted from CheekyScientist

We need single color controls to determine intensity of each fluorochrome

Teiko.bio

How much of each of these fluorochromes is present on the cell? Teiko.bio

Х

Channel

А

B C

	Individual Spectra		
Detector	Α	В	С
1	0	0	0
2	0	0	0
3	0	0.1	0
4	0	0.2	0.1
5	0	0.3	0.5
6	0.1	0.35	0.17
7	0.15	0.3	0.15
8	0.2	0.2	0.1
9	0.3	0.1	0
10	0.35	0	0
11	0.3	0	0
12	0.2	0	0
13	0.1	0	0.1
14	0	0	0.15
15	0	0	0.2
16	0	0	0.15
17	0	0	0.1
18	0	0	0
19	0	0	0
20	0	0	0

			Observed
	Ĺ	Observed	
			0
			0
			0.6
			1.6
Attrib	oution		3.8
			3.78
	A (1-1)		3.9
inei	Attribution		3.6
	?	_	3.6
	?	-	3.5
	?		3
			2
			1.4
			0.6
			0.8
			0.6
			0.4
			0
	Adapt	ed from	0
	Cheek	<u>(vScientist</u>	0

How much of each of these fluorochromes is present on the cell? Teiko.bio

Mixing Attr	ibution =	Observed
-------------	-----------	----------

 $[20 \times 3]$ $[3 \times 1]$ = $[20 \times 1]$

Channel	Attribution
А	10
В	6
С	4

How much of each of these fluorochromes is present on the cell? Teiko.bio

Х

	Individual Spectra		
Detector	Α	В	С
1	0	0	0
2	0	0	0
3	0	0.1	0
4	0	0.2	0.1
5	0	0.3	0.5
6	0.1	0.35	0.17
7	0.15	0.3	0.15
8	0.2	0.2	0.1
9	0.3	0.1	0
10	0.35	0	0
11	0.3	0	0
12	0.2	0	0
13	0.1	0	0.1
14	0	0	0.15
15	0	0	0.2
16	0	0	0.15
17	0	0	0.1
18	0	0	0
19	0	0	0
20	0	0	0

20

Channel	Attribution
A	10
В	6
С	4

Adapted from CheekyScientist

Observed
0
0
0.6
1.6
3.8
3.78
3.9
3.6
3.6
3.5
3
2
1.4
0.6
0.8
0.6
0.4
0
0
0

=

In sum

Appendix

