You're in the right place.

This webinar will be recorded and posted on youtube.com/@teikobio

Teiko.bio

Literature deep dive:

High-resolution spectral flow compared to conventional flow: what are developers finding?

Ramji Srinivasan Teiko CEO

Problem

"If a scientist is interested only in T cells, as that is the main modality of the drug, why would he or she do the extra work to analyze the rest of the immune state?"

Paraphrased from an immunotherapy developer

Literature tour

Three examples

Paper	# Markers on Panel	Sample Type	# Patients	Stage
Design, optimisation and standardisation of a high-dimensional spectral flow cytometry workflow assessing T-cell immunophenotype in patients with melanoma - PMC	27, 20	PBMC	15 melanoma, 16 healthy	Pre-treatment
Combination of pembrolizumab and pelareorep promotes anti-tumour immunity in advanced pancreatic adenocarcinoma (PDAC) British Journal of Cancer	20	PBMC	13 pancreatic adenocarcinoma	Phase 2
PSCA-CAR T cell therapy in metastatic castration-resistant prostate cancer: a phase 1 trial Nature Medicine	25	PBMC	14 prostate cancer	Phase 1

Melanoma: Simplified Study Design

15 melanoma patients 16 healthy controls

27 marker resting T-cell panel

Van Zelm, et al 2023

Target marker	Fluorochrome
Ki67	BUV395
Viability	Live/Dead blue
CD45RA	BUV496
CD19	BUV563
ICOS	BUV661
CD56	BUV737
CD3	BUV805
TIGIT	BV421
CD57	Pacific Blue
CD16	BV510
CXCR5	BV605
CCR7	BV750
PD-1	BV786
TIM-3	BB515
CD8	Spark Blue 550
CD45	PerCP
ΤCRγδ	PerCP-Vio700
Tox	PE
CD4	cFluorYG584
CD95	PE-Dazzle594
Tbet	PE-Cy5
CD25	PE-Fire 700
EOMES	PE-Cy7
KLRG1	APC
IRF4	AF647
CD127	R718
CD39	APC-Fire750

27 marker Resting Panel

Target marker	Fluorochrome
TNFα	BUV395
Viability	Live/Dead blue
CD45RA	BUV496
CD19	BUV563
CD3	BUV805
IL-10	BV421
Granzyme B	BV510
IFNγ	BV605
CCR7	BV750
CTLA-4	BV786
IL-2	AF488
CD8	Spark Blue 550
CD45	PerCP
ΤCRγδ	PerCP-Vio700
CD4	cFluorYG584
CD95	PE-Dazzle594
CD25	PE-Fire 700
IL-17A	PE-Cy7
IL-4	APC
CD127	R718

Teiko.bio

20 marker Activated Panel

Results

Statistically significant findings (and those ruled-out)

- \blacksquare activated $\gamma \delta T$ cells in melanoma patients compared to controls.
- IL-17A (P = 0.027) and TNF α (P = 0.047) in melanoma patient $\gamma\delta T$ cells.
- \blacksquare expression of CD57 (P = 0.041) and EOMES (P = 0.033) in melanoma patient $\gamma \delta T$ cells.

What if?

Marker	Fluorochrome
CD3	BUV805
CD4	BV605
CD8	Spark Blue 550
CD45	BUV496
CCR7	BV750
TCRgd	PerCP-Vio700
CD19	BUV563
Viability Dye	BUV395

8 marker truncated panel

Supplementary table 2: Panel 1 (resting) population definitions.

Marker	Fluorochrome	
CD3	BUV805	V
CD4	BV605	
CD8	Spark Blue 550	
CD45	BUV496	V
CCR7	BV750	
TCRgd	PerCP-Vio700	V
CD19	BUV563	V
Viability Dye	BUV395	V

	Population name	Phenotype definition		
	All populations gated fr	om live lymphocytes: CD45 SSC low Live/Dead Blue		
1	B cells	CD3 CD19 V		
2	NK cells	CD3 CD19 CD16/CD56		
3	T cells	CD3 ⁺ CD19 ⁻		
4	∟TCRγδ ⁺	CD3 ⁺ CD19 ⁺ TCRγδ ⁺	Minimum 5 markers	
7	∟TCRαβ [†]	Q₹ CI₹ TQ₹	concurred in action	
10	∟CD4 CD8	CD3 CD19 TCRy8 CD4 CD8	consumed in gating	
11	∟CD4 T cells	CD3 [†] CD19 TCRγδ CD4 [†] CD8	yδ T cells	
12	∟Treg	CD3 ⁺ CD19 ⁻ TCRγδ ⁻ CD4 ⁺ CD25 ⁺ CD127 ^{-%}	YO I Cells	
13	∟NOT Treg	CD3 ⁺ CD19 ⁻ TCRγδ ⁻ CD4 ⁺ CD25 ^{+/to} CD127 ^{+/-}		
14	∟ Naive/stem-like	CD3 ⁺ CD19 ⁻ TCR ₇ δ ⁻ CD4 ⁺ CD25 ^{+/lo} CD127 ^{+/-} CD45RA ⁺ CCR7 ⁺		
15	∟ Tnaive	CD3 ⁺ CD19 ⁻ TCR ₇ δ ⁻ CD4 ⁺ CD25 ^{+/δ0} CD127 ^{+/-} CD45RA ⁺ CCR7 ⁺ CD95 ⁻		
16	∟ Tscm	CD3 ⁺ CD19 TCRγδ CD4 ⁺ CD25 ^{+/lo} CD127 ^{+/-} CD45RA ⁺	CCR7 [†] CD95 [†]	
17	∟Tcm	CD3 ⁺ CD19 ⁻ TCRγδ ⁻ CD4 ⁺ CD25 ^{+/to} CD127 ^{+/-} CD45RA ⁻	CCR7 ⁺	
18	∟TemRO	CD3 ⁺ CD19 ⁻ TCRγδ ⁻ CD4 ⁺ CD25 ^{+/to} CD127 ^{+/-} CD45RA ⁻	CCR7	
19	∟TemRA	CD3 ⁺ CD19 ⁻ TCRγδ ⁻ CD4 ⁺ CD25 ^{+/lo} CD127 ^{+/-} CD45RA ⁺	CCR7	
20	∟Tfh	CD3 ⁺ CD19 ⁻ TCRγδ ⁻ CD4 ⁺ CD25 ^{+/60} CD127 ^{+/-} CD45RA ⁺	CXCR5 ⁺	
21	∟CD8 T cells	CD3 ⁺ CD19 TCRγδ CD8 ⁺		
22	∟ Naive/stem-like	CD3 ⁺ CD19 ⁻ TCRγδ ⁻ CD8 ⁺ CD45RA ⁺ CCR7 ⁺		
23	∟ Tnaive	CD3+CD19 TCRγδ CD4+CD25+00 CD127+ CD45RA+	CCR7 ⁺ CD95 ⁻	
24	∟Tscm	CD3 ⁺ CD19 ⁻ TCRγδ ⁻ CD4 ⁺ CD25 ^{+/lo} CD127 ^{+/-} CD45RA ⁺	CCR7 ⁺ CD95 ⁺	
25	∟Tcm	CD3 ⁺ CD19 ⁻ TCRy8 ⁻ CD8 ⁺ CD45RA ⁻ CCR7 ⁺		
26	∟TemRO	CD3 ⁺ CD19 TCRγδ CD8 ⁺ CD45RA CCR7		
27	∟ TemRA	CD3 ⁺ CD19 ⁻ TCR ₇ δ ⁻ CD8 ⁺ CD45RA ⁺ CCR7 ⁻		

Applying the truncated panel

15 melanoma patients 16 healthy controls

27 marker resting T-cell panel

8 marker truncated panel

20 marker activated panel

Missed or incomplete understanding of the immune response

• \bullet activated $\gamma \delta T$ cells in melanoma patients compared to controls.

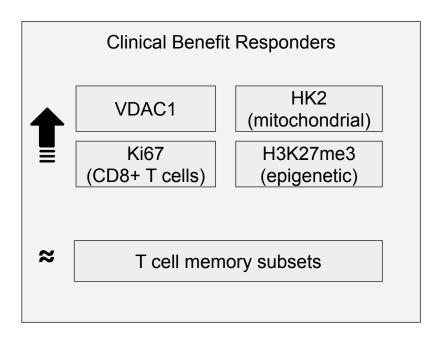
• IL-17A (P = 0.027) and TNF α (P = 0.047) in melanoma patient $\gamma\delta T$ cells.

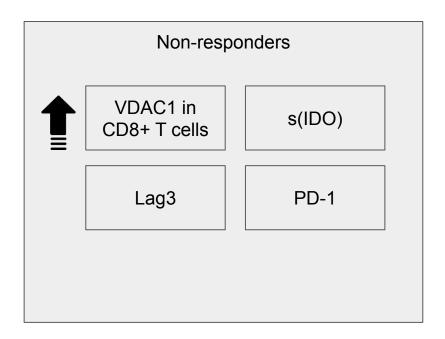
• \blacksquare expression of CD57 (P = 0.041) and EOMES (P = 0.033) in melanoma patient $\gamma \delta T$ cells.

PDAC: Simplified Study Design

13 pancreatic adenocarcinoma patients (6 non-responders)

21 marker panel

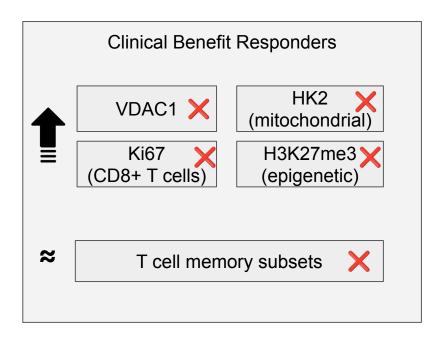

Zhang, et al 2023

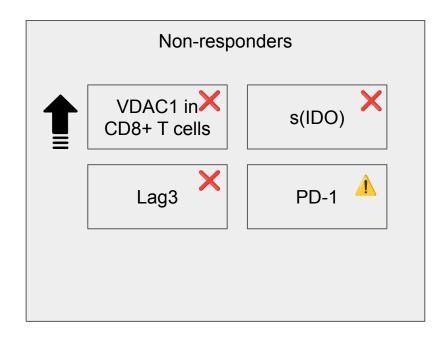

Target	Conjugate
Live and Dead	Zombie yellow
CD3	BV786
CD8	BV480
CD45RA	BV570
CCR7	BV650
CD25	BV510
HLA-DR	BV750
PD-1	BV711
CD4	PE/CY5
KLRG1	PE-CF594
CD49A	APC
CD19	APC/CY7
CD56	APC/CY7
CD28	Alexa Fluor 488
FOXP3	Pacific Blue
TOMM20	Alexa Fluor 405
VDAC1	PerCP5.5
KI67	PE/CY7
HK2	Alexa Fluor 680
GLUT1	Alexa Fluor 647
H3K27ME3	PE

Teiko.bio

21 marker panel

Statistically significant findings (and those ruled-out)




What if?

Marker	Conjugate
CD3	BV786
CD8	BV480
CD4	PE/CY5
CD45RA	BV570
CCR7	BV650
PD-1	BV711
HLA-DR	BV750

8 marker truncated panel

Statistically significant findings (and those ruled-out)

Prostate Cancer, Phase 1: Simplified Study Design

14 prostate cancer patients Before and after therapy Response vs non-response

25 marker panel

Priceman, et al 2024

Marker	Fluerophore
	Fluorophore
CD3	Alexa Fluor 532
CD4	PerCP
CD8	BV570
CD45RA	BV650
CD45	Alexa Fluor 700
CD62L	BV711
CD19	V450
CD39	BV510
CD69	BV750
CD14	FITC
CX3CR1	PE-Cy7
LD	7AAD
CXCR3	PE
PD-1	BV421
CD28	APC-Cy7
LAG-3	APC
Tim3	PE-Cy5.5
CD16	BV786
CCR4	Alexa Fluor 647
CD27	PE-CF594
CCR7	BV605
CD45RO	BV480
CD25	PerCP-eFluor710
PD-L1	PE-Fire810
CD95	APC-Fire 810

Teiko.bio

25 marker panel

Statistically significant findings (and those ruled-out)

- CX3CR1 in peripheral blood CAR T cells, correlated with response to immunotherapy with anti-PD-1 immune-checkpoint blockade.
- Few CX3CR1-positive T cells were observed in the product before infusion.
- PD-1, LAG3 and TIM3 in CAR+ and endogenous non-CAR T cells.

What if?

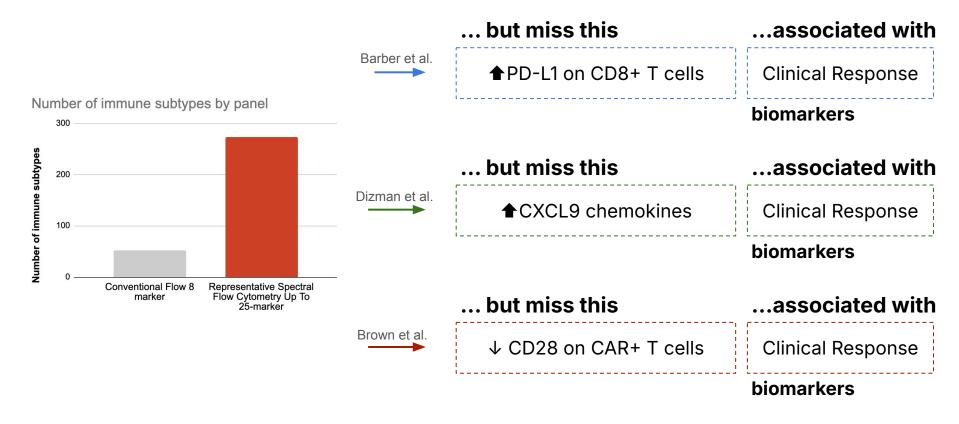
Marker	Conjugate
CD3	Alexa Fluor 532
CD4	PerCP
CD8	BV570
CD45RA	BV650
CCR7	BV605
CD19	V450
PD-1	BV421
Viability	7AAD

8 marker truncated panel

Missed or incomplete understanding of the immune response

• CX3CR1 in peripheral blood CAR T cells, correlated with response to immunotherapy with anti-PD-1 immune-checkpoint blockade.

- X
- Few CX3CR1-positive T cells were observed in the product before infusion.



◆ PD-1, LAG3 and TIM3 in CAR+ and endogenous non-CAR T cells.

More like this

If you only used 8-marker conventional flow...

In sum

"If a scientist is interested only in T cells, as that is the main modality of the drug, why would he or she do the extra work to analyze the rest of the immune state?"

 Paraphrased from an immunotherapy developer "The immune system consists of more than one cell type."

CSO, immunotherapy developer

Any examples we should cover?

Send us your ideas!

- "Thus far, immune cell evaluations have been limited by conventional cytometry and relied on multiple panels to gain phenotyping depth...
- ...capturing the complexity of the immune response for biomarker screening and validation of previous findings requires robust and sensitive tools capable of simultaneously measuring a high number of parameters."
 - Van Zelm, et al, Clinical & Translational Immunology, 2023