1

You're in the right place.

To follow along at home, download our report at teiko.bio/technology/#clia-validation-data

CLIA Validation for our Pan-Immune Profiling Test

We put the "precision" in precision immune monitoring

Ramji Srinivasan Teiko CEO

Read along at home

teiko.bio/technology/#clia-validation-data

Problem

High-stakes reliable measurement

How do you reliably weigh a crying baby at low birth weight?

Low birth weight babies that don't gain weight quickly need medical intervention

Need a weight scale that can reliably detect weight gain

How do you reliably weigh a crying baby?

Now think about the immune state

How do you reliably measure the immune state?

Need immune "scale" that can reliably measure immune response across cells

How do you reliably measure the immune state?

What we tested

Tests used Peripheral Blood Mononuclear Cells Teiko.bio (PBMCs) isolated in-house from healthy donors

Teiko's Pan-Immune Profiling PBMC Test

13

Each entry is a signal intensity

How do you reliably measure the immune state?

Is this thing valid?

Validation Plan

Measure	Meaning	Acceptance Criteria	Total Immune Subsets Analyzed*	Total Average Coefficient of Variation (%)	Total Average Change (%)
Intra-Run Precision	Same sample, same run	CV ≤ 25% between replicates	We'll go through these numbers in the next for slides		
Inter-Run Precision	Same sample, different runs	CV ≤ 30% between runs			in the next few
Inter- Operator Precision	Two donors, fixed by different operators	CV ≤ 25% between operators			
Stability	Same sample, across time	Change ≤ ±25% between days			

*Only populations with >100 median cells were included in analysis

Coefficient of Variation

True Weight [kgs]	2.165
Baseline Weight [kgs]	2.115

	Good Scale	Bad Scale
Measurement	Measured weight	Measured weight
1	2.16	3.66
2	2.17	3.34
3	2.21	1.48
4	2.22	1.30
5	2.24	1.96
Coefficient of variation	1.44%	46.20%
Standard Deviation	0.0317	1.0851
Mean	2.1997	2.3489

Intra-run

Intra-Run Precision: Same sample, same run

Teiko.bio

Intra-Run Precision by major lineage

22

Inter-run

Inter-Run Precision: Same sample, different days Teiko.bio

Inter-Run Precision by major lineage

25

Inter-Run Precision by cell population size

Inter-Run Precision

26

Inter-operator

Inter-Operator Precision: Two donors, fixed by different operators

28

Inter-Operator Precision by major lineage

29

Stability

Stability: same sample, processed after 1 or 21^{Teiko.bio} days

Stability by major lineage

Is this thing valid?

Validation Plan

Measure	Meaning	Acceptance Criteria	Total Immune Subsets Analyzed*	Total Average Coefficient of Variation (%)	Total Average Change (%)
Intra-Run Precision	Same sample, same run	CV ≤ 25% between replicates	Here we go!		
Inter-Run Precision	Same sample, different runs	CV ≤ 30% between runs			
Inter- Operator Precision	Two donors, fixed by different operators	CV ≤ 25% between operators			
Stability	Same sample, across time	Change ≤ ±25% between days			

*Only populations with >100 median cells were included in analysis

Yes!

Measure	Meaning	Acceptance Criteria	Total Immune Subsets Analyzed*	Total Average Coefficient of Variation (%)	Total Average Change (%)
Intra-Run Precision	Same sample, same run	CV ≤ 25% between replicates	30	3.52%	
Inter-Run Precision	Same sample, different runs	CV ≤ 30% between runs	33	6.66%	
Inter- Operator Precision	Two donors, fixed by different operators	CV ≤ 25% between operators	30	 Donor 1: 4.83% Donor 2: 7.36% 	
Stability	Same sample, across time	Change ≤ ±25% between days	29		-0.01%

*Only populations with >100 median cells were included in analysis

Well suited for demanding clinical trials

teiko.bio/technology/#clia-validation-data

Thank you! teiko.bio

To measure the immune state

- Presence or absence of dozens of different individual cell types across hundreds of thousands of cells
- Presence or absence of unique markers on those cells
- Proportion of those cells in relation to one another

Teiko's Pan-Immune Profiling PBMC Panel (1/2)

Carefully selected antigens identify:

- All major immune subpopulations
- Important activation and / or maturation proteins

T cells

T cells

CD3	Total T cells
CD4	CD4+ T cells
CD8a	CD8+ T cells
CD25	Treg, activation
CD27	Maturation
CD28	Costimulation
CD38	Maturation

CD39 CD45RA CD56 **CD57** CD69 CD127 CD152 (CTLA4) CD161 CD197 (CCR7) CD279 (PD-1) Foxp3 qdTCR Granzyme B HLA-DR ICOS KLRG1 LAG-3 T-bet TIGIT Tim-3

Activation Naive/memory cells NKT cells, T cell subsets Senescence Activation T cell subsets Checkpoint T cell subsets Naive/memory cells Checkpoint Treq cells qd T cells Cytotoxicity Activation Checkpoint Inhibition Checkpoint T cell subsets Checkpoint Checkpoint

Teiko's Pan-Immune Profiling PBMC Panel (2/2)

Antigen-presenting cells and NK cells		NK cells			
	B cells		CD8a	NK cell subsets	
	CD19	Total B cells	CD16	NK cell subsets	
	CD25	Activation	CD38	Activation	
	CD27	Naive/memory	CD56	NK cell subsets	
	CD38	Naive/memory	CD57	Maturation	
	CD74	Antigen presentation	CD69	Activation	General
	CD86	Costimulation	CD161	NK cell subsets	CD45
	HLA-DR	Antigen presentation	Granzyme B	Cytotoxicity	CD66b
	lgG4	B cell subsets	KLRG1	Inhibition	Ki67
1	Myoloid o	olle	T-bet	Maturation	DNA
		Monocytos macrophagos	TIGIT	Checkpoint	live/dead
		Monocytes, macrophages	CD86	Costimulation	
		Monocytes, macrophages, DCs	CD123	pDCs	
	CD14 CD15	Myoloid subsets, macrophages	LOX-1	Migration	
		Monocyto subsets	PD-L1	Checkpoint ligand	
	CD10	Total myoloid	HIA-DR	Antigen presentation	
	0033	i utai iliyelulu		, and goin procontation	